Hierarchically nanotextured surfaces maintaining superhydrophobicity under severely adverse conditions.

نویسندگان

  • Tanmoy Maitra
  • Carlo Antonini
  • Matthias Auf der Mauer
  • Christos Stamatopoulos
  • Manish K Tiwari
  • Dimos Poulikakos
چکیده

Superhydrophobic surfaces are highly desirable for a broad range of technologies and products affecting everyday life. Despite significant progress in recent years in understanding the principles of hydrophobicity, mostly inspired by surface designs found in nature, many man-made surfaces employ readily processable materials, ideal to demonstrate principles, but with little chance of survivability outside a very limited range of well-controlled environments. Here we focus on the rational development of robust, hierarchically nanostructured, environmentally friendly, metal-based (aluminum) superhydrophobic surfaces, which maintain their performance under severely adverse conditions. Based on their functionality, we superpose selected hydrophobic layers (i.e. self-assembled monolayers, thin films, or nanofibrous coatings) on hierarchically textured aluminum surfaces, collectively imparting high level robustness of superhydrophobicity under adverse conditions. These surfaces simultaneously exhibit chemical stability, mechanical durability and droplet impalement resistance. They impressively maintained their superhydrophobicity after exposure to severely adverse chemical environments like strong alkaline (pH ∼ 9-10), acidic (pH ∼ 2-3), and ionic solutions (3.5 weight% of sodium chloride), and could simultaneously resist water droplet impalement up to an impact velocity of 3.2 m s(-1) as well as withstand standard mechanical durability tests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity.

Designing multifunctional surfaces that have user-specified interactions with impacting liquids and with incident light is a topic of both fundamental and practical significance. Taking cues from nature, we use tapered conical nanotextures to fabricate the multifunctional surfaces; the slender conical features result in large topographic roughness, while the axial gradient in the effective refr...

متن کامل

Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates.

Lubricant-infused textured solid substrates are gaining remarkable interest as a new class of omni-repellent nonfouling materials and surface coatings. We investigated the effect of the length scale and hierarchy of the surface topography of the underlying substrates on their ability to retain the lubricant under high shear conditions, which is important for maintaining nonwetting properties un...

متن کامل

From superhydrophobicity and water repellency to superhydrophilicity: smart polymer-functionalized surfaces.

pH-responsive surfaces, reversibly switching between superhydrophilicity and superhydrophobicity/water repellency, are developed by "grafting from" a pH-sensitive polymer onto a hierarchically micro/nano-structured substrate. We quantify the water repellency by investigating the restitution coefficient of water droplets bouncing off the surfaces. The water repellent state requires appropriate h...

متن کامل

Bio-inspired hierarchically structured polymer fibers for anisotropic non-wetting surfaces

We demonstrate a rice leaf-like hierarchically textured polymer fiber array for anisotropic non-wetting surfaces. To provide superhydrophobicity in addition to the anisotropic behavior, fiber surfaces are spray coated with organically modified silica nanoparticles. The resulting micro/nano hierarchically structured fiber surfaces demonstrate anisotropic non-wetting properties. We designed vario...

متن کامل

Strain-controlled switching of hierarchically wrinkled surfaces between superhydrophobicity and superhydrophilicity.

Recent years have witnessed intense interest in multifunctional surfaces that can be designed to switch between different functional states with various external stimuli including electric field, light, pH value, and mechanical strain. The present paper is aimed to explore whether and how a surface can be designed to switch between superhydrophobicity and superhydrophilicity by an applied strai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 15  شماره 

صفحات  -

تاریخ انتشار 2014